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ABSTRACT

At the oriented object detection in aerial remote sensing images, the perceptual field boundaries of 
ordinary convolutional kernels are often not parallel to the boundaries of the objects to be detected, 
affecting the model precision. Therefore, an object detection model (DCN-BBAV) that fuses 
deformable convolution networks (DCNs) and box boundary-aware vectors (BBAVs) is proposed. 
Firstly, a BBAV is used as the baseline, replacing the normal convolution kernels in the backbone 
network with deformable convolution kernels. Then, the spatial attention module (SAM) and channel 
attention mechanism (CAM) are used to enhance the feature extraction ability for a DCN. Finally, 
the dot product of the included angles of four adjacent vectors are added to the loss function of the 
rotation frame parameter, improving the regression precision of the boundary vector. The DCN-
BBAV model demonstrates notable performance with a 77.30% mean average precision (mAP) on the 
DOTA dataset. Additionally, it outperforms other advanced rotating frame object detection methods, 
achieving impressive results of 90.52% mAP on VOC07 and 96.67% mAP on VOC12 for HRSC2016.
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INTRODUCTION

Aerial object detection is a key computer vision task (Ding et al., 2021; Wang et al., 2020; Hu et al., 
2022) that has been getting increasing attention in recent years and plays a significant role in remote 
image understanding. Unlike general object detection, aerial object localization presents particularly 
tricky questions, including nonaxis-aligned objects in arbitrary directions (Ding et al., 2019; Han et 
al., 2021; Pan et al., 2020) and dense distributions in complex contexts (Guo et al., 2021; Yang et al., 
2018, 2021). For example, aircraft object detection techniques are mainly interfered with by external 
factors, for instance, noise, weather, light intensity, shadows, and background (Xiaolin et al., 2021) 
in remote sensing images.

Mainstream methods usually treat aerial object detection as a question of rotating object 
localization (Han et al., 2020; Yang et al., 2020a). Among them, the angle-based direct orientation 
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regression method is dominant in this research area, and it comes from general detectors (Lin et al., 
2016; Li et al., 2022a; Lu et al., 2022; Zhang et al., 2022) with additional orientation parameters. 
While promising performance has been achieved, direct orientation prediction still suffers from a 
number of problems, including loss discontinuities and regression inconsistencies (Wang et al., 
2022; Yang et al., 2020a, 2021; Yang & Yan 2022). The reasons are the bounded periodicity of the 
angular directions and the orientation definition of the rotating bounding box. Detectors based on 
orientation regression may not be able to accurately predict the orientation despite their attractive 
localization results.

To effectively address the aforementioned issues, the representation of airborne objects is 
revisited in order to prevent orientation estimation that is overly sensitive. Point sets are exceptionally 
capable of capturing important semantic features in conventional general-purpose detectors, 
such as RepPoints, as a fine-grained object representation (Yao et al., 2022). However, its basic 
transformation function can only generate upright-horizontal bounding boxes, which are unable 
to precisely calculate the orientation of airborne objects with precision. Additionally, RepPoints 
ignores a measure of the learned point’s quality and merely regresses significant points. Poor 
performance for complex scenes and nonaxis-aligned objects with dense distribution may result 
from this in aerial images.

According to deformable convolutional networks (DCNs) (Zhou et al., 2022) and box boundary-
aware vectors (BBAVs) (Yi et al., 2020), a new object detector oriented to aerial imagery, called 
DCN-BBAV, is proposed. It introduces adaptive point representations for different orientations, 
shapes, and attitudes. Compared to traditional directional regression methods, the suggested method 
captures the underlying geometry of arbitrarily oriented aerial instances in addition to finely localized 
aerial detection. Specifically, to fit the aerial objects, initial adaptive points are generated from the 
centroid and then refined. In addition, accurate feature extraction is performed on tilted objects using 
a deformable convolutional kernel, a scheme that measures the quality of the oriented repoints in 
terms of classification, localization, and feature correlation of the points. The scheme enables the 
detector to assign representative oriented direction vectors by capturing nonaxis-aligned information 
from nearby objects or background noise. In addition, a spatial attention mechanism (SAM) and 
channel attention mechanism (CAM) are presented to improve feature extraction, enabling points 
of vulnerability to discover their case owners in the complicated context of the aerial scene. The 
framework of the method obtains more accurate orientation and more precise detection performance 
compared to directional regression-based approaches.

In summary, the main contributions are:

1) 	 Using a BBAV as a baseline model, which uses predicted centroids and boundary-aware vectors 
for directional object detection, effectively addressing the challenge of multiscale and arbitrary 
direction object detection. Owing to the nonhorizontal nature of the boundary feature distribution 
of the directional object, the use of ordinary convolutional kernels is easily affected by the 
background features. Therefore, the ordinary convolutional kernels in the feature extraction 
network are replaced by DCN kernels, which will enhance the discrimination of the variable 
target shapes.

2) 	 To improve the feature extraction effect of deformable convolution, add the spatial attention 
module to a feature extraction network and the channel attention mechanism after the feature 
pyramid network.

3) 	 Add the dot product of the angles of four neighboring vectors in the loss function of the rotating 
frame parameter, so that the angle of the angle tends to be a right angle, which improves the 
accuracy of the boundary vector regression.
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RELATED WORKS

Remote Sensing Image Object Detection
Recent methods for aerial object detection mostly use orientation regression over traditional object 
detectors. By foreseeing the rotation angle of the bounding box, SCRDet (Yang et al., 2018), CADNet 
(Zhang et al., 2019), DRN (Pan et al., 2020), R3Det (Yang et al., 2020b), ReDet (Han et al., 2021), and 
directional RCNN (Xie et al., 2021) all perform well. By regressing the quadrilateral, Gliding Vertex 
(Xu et al., 2019) and RSDet (Wang et al., 2022) enhanced the detection outcomes. Angle regression 
was changed to angle classification by Yang et al. (2022) to overcome the boundary discontinuity in 
angle-based orientation estimation. To get more reliable results for directional object detection, Yang 
et al. (2021) parameterized the rotating bounding box as a 2D Gaussian distribution. These techniques 
are mostly employed to enhance orientation estimation by using rotated angular representations.

Most conventional object detection methods (Lu et al., 2022; Zhang et al., 2022; Yao et al., 2022; 
Tian et al., 2019) concentrate on vertically or axis-aligned objects, which may have trouble detecting 
densely distributed nonaxis-aligned objects in complex backgrounds. To solve this problem, Wang et 
al. (2019) deployed the inception lateral connection network (ILCN) to augment the feature pyramid 
network (FPN) with the semantic attention network (SAN) in order to offer semantic features that 
can effectively distinguish objects of interest from congested backgrounds. Under the guidance of 
oriented bounding boxes, Ding et al. (2019) suggested spatial transformations on axis-aligned ROIs 
and learned nonaxis-aligned representations. In order to train the network, SCRDet++ (Yang et al., 
2020c) enhanced nonaxis-aligned features and increased object responses. Han et al. (2020) created 
a module for character alignment to reduce the mismatch across axis-aligned convolutional features 
and random object-oriented objects. A DRN (Pan et al., 2020) suggested a character selection module 
to consolidate nonaxis-aligned information from various kernel sizes, shapes, and orientations, and 
perform additional regression by using a dynamic filter generator. Guo et al. (2021) used a convex 
packet representation to acquire irregular shapes and configurations with the intention of avoiding 
feature aliasing via learnable feature adaptation. However, many models typically exhibit high false 
positives when facing targets with diverse types and arbitrary directions. In order to better solve the 
problem of multiscale and arbitrary direction object detection, Yi et al. (2020) and Yu et al. (2022) 
proposed different detection methods based on BBAVs. Among them, Yi et al. (2020) extended 
the target detector based on horizontal key points to directional object detection tasks, combined 
Cartesian coordinate design with directional boundary classification, effectively solving the problem 
of objects learning for any direction, Yu et al. (2022) proposed the ASFF-BBAV by introducing 
multiscale adaptive spatial feature fusion (ASFF) on the basis of the BBAV, which fuses multiscale 
convolutional neural network Res2Net with adaptive spatial features, effectively enhancing the 
adaptability of the detection model to objects of different sizes. These two studies indicate that 
using BBAVs can effectively solve the problem of boundary feature extraction for multiscale and 
arbitrary directional targets. However, their feature extraction ability for targets with variable shapes 
still needs to be improved.

In addition, some efforts have been made to enhance the interpretability of models and improve 
their performance by incorporating adversarial generative networks. Ferdous et al. (2019) proposed 
a two-stage detector that utilizes GAN for image super-resolution and SSD for object detection. 
Similarly, Rabbi et al. (2020) integrated ESRGAN and edge-enhanced GAN to develop an end-to-end 
small object detection network, employing Faster RCNN and SSD for object detection. However, 
the primary focus of these methods is to enhance image resolution, and their effectiveness in tasks 
involving directional object detection is limited.

Problems and Solution Strategies
Summarizing the above analysis, many anchorless-based directional object detection models are 
prone to be affected by the background or other objects due to the structural characteristics of the 
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ordinary convolutional kernel, causing problems such as inaccurate semantic information when 
feature extraction is performed for the boundaries of arbitrarily oriented objects. Aiming to solve this 
problem, using a BBAV as a baseline model, it is proposed to use a deformable convolution kernel 
instead of an ordinary convolution kernel to address the problem. It can not only effectively deal 
with multiscale and arbitrary direction targets but also effectively solve the problem of target shape 
variability. In addition, the mechanism of attention is used to enhance the feature extraction capability 
of a variability convolution kernel, further increasing the precision of the proposed DCN-BBAV model.

THE PROPOSED DCN-BBAV-BASED OBJECT DETECTION METHOD

The proposed algorithm takes the BBAV model as the baseline and changes the 3 × 3 convolutional 
kernel in the backbone’s feature extraction network ResNet101 to a DCN. The features extracted by 
the ordinary convolutional kernel are the feature regions parallel to the image boundaries, and thus 
the feature regions contain a lot of semantic information that is not related to the object, which is not 
conducive to the enhancement of the model’s detection accuracy, whereas a DCN can effectively 
solve this problem. Figure 1 shows the DCN-BBAV model structure:

The input image in Figure 1 is changed to 608 × 608 prior to transmission over the network. A 
U-shaped network supports the structure’s design. During the upsampling procedure, skip connections 
are utilized to merge feature maps. Four mappings constitute the output of the architecture: a box 
parameter map B, a heatmap P, an orientation map α, and an offset map O. The heatmap and offset 
map are utilized to determine the centroid’s location. The input image of the model is assumed to 
be Input ∈ R3 × H × W, where 3 indicates the channels’ number, H stands for the height, and W 
stands for the width. Four branches are transformed from the output feature map X ∈ RC × (H/S) × 
(W/S) (C = 256 in this paper), they are orientation map (α ∈ R1 × (H/S) × (W/S)), heatmap (P ∈ RK 
× (H/S) × (W/S)), box parameter (B ∈ R10 × (H/S) × (W/S)), and offset (O ∈ R2 × (H/S) × (W/S)), 
where S = 4 represents the scale, and K represents the number of data set categories. Three 3 × 3 
ordinary convolutional kernels and two convolutional layers with 256 channels are used to implement 
the transformation.

Deformable Convolutional Networks
In feature extraction of an image using a convolutional kernel, for each output y (P0), nine positions are 
sampled from the input x. The set of sampling points R = {(–1,–1),(–1,0),(–1,1),(0,–1),(0,0),(0,1),(1,–
1),(1,0),(1,1)} is shown in Figure 2:

The initial version of deformable convolution optimizes the locations of feature extraction, 
and the second version of deformable convolution multiplies each feature point by a coefficient ∈ 

Figure 1. The DCN-BBAV model structure
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[0,1], which is also learned through training, so that the output channel in deformable convolution 
is increased from 2N to 3N. The coefficients obtained through learning are generally small, so it is 
necessary to use bilinear interpolation to round the sampling locations.

y P P x P L O M
L R n n n

( ) ( ) ( )
0 0 0

=
n∈

⋅ + + ⋅∑ w ,	 (1)

where O
n

 is the offset and M
n

 is the weight. The DCN calculation process is shown in Figure 3:

Thermograms
Utilizing the heatmap, it is possible to locate the center of an object. The heatmap has k channels that 
correspond to different classes of objects. The mapping on each channel passes through a sigmoid 
function, which represents the value of each pixel point of the heatmap as the confidence level of the 
object. Considering that the center point of a directional detection box is ( , )x y , the probability density 

Figure 2. The set of sampling points

Figure 3. The DCN calculation process
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values for all coordinates of the entire heatmap are obtained using the coordinates of this point as the 
mean and adaptively generating the variance based on the size of the box, using a two-dimensional 
Gaussian distribution. Training the heatmap results in only the center point being positive. Negative 
values exist for all other points, including those in the Gaussian bump. Due to the imbalance problem, 
learning positive centroids directly would be difficult. To solve this problem, based on the work in 
the literature (Albattah et al., 2022), the penalty for points within the Gaussian bump is reduced, and 
focal loss is used to train the heatmap:
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where p  and p̂  indicate the predicted and true values, correspondingly, i  represents the pixel 
coordinate, N  represents the total number of objects, and a  and b  adjust the weights of positive 
and negative samples. In the proposed DCN-BBAV, a  and b  take the values of 2 and 4, respectively.

Center Offset
The model inference sets the maximum point in the heatmap as the center of the detection object 
c. The initial value of this point is an integer, and after downsampling, it becomes a floating-point 
number. The error can be eliminated by offsetting o, as shown in Equation (3):
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Optimizing the offset with a smoothed L1 loss (Qian et al., 2023):

L
N

Smooth O O
O Lk

N

k k
= −

=∑
1

11
( ˆ ) ,	 (4)

where the objects’ total number representation is N , the ground truth offset representation is 
Ô , and k  represents the objects.

Rotation Box Parameters
The baseline method for capturing the oriented bounding box is named Center-WH-θ. This method 
has several drawbacks. First, when the angle is very small, it has an effect on the model loss, resulting 
in a relatively large intersection that connects the predicted box and the real box. Furthermore, the 
w and h of each object’s OBB are calculated in a separate rotated coordinate system with an angle θ 
relative to the y-axis. Consequently, it is difficult for the network to acquire the box parameters of all 
objects simultaneously. The OBB is described using the box boundary-sensing vectors in this paper. 
The BSAV includes the upper t, right r, lower b, and left l vectors from the center point of the object. 
The four quadrants of the Cartesian coordinate system are occupied by these four categories of vectors. 
All arbitrarily oriented objects share a common coordinate system, thereby enhancing generalization 
by facilitating the transfer of mutual information. The rotating frame parameter is b t r b l w h

e e
= 


, , , , , , 

where w
e

 and h
e

 denote the width and height of the external horizontal rectangular frame of the 
OBB, respectively. The rotating box is depicted in Figure 4:

The rotating frame loss function is:
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where b  and b̂  represent the predicted and ground truth box parameters, correspondingly. In 
this paper, the angle loss function between the boundary vectors is added:

L
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where t l× , t r× , b l× , b r×  are dot products of vectors, such that the angle between neighboring 
vectors is maintained at 90° during vector regression.

Classification of Rotating Bounding Boxes
A BBAV categorizes rotating boxes into two types, HBB and RBB, with RBB comprising all rotating 
bounding boxes, excluding horizontal boxes. When the network encounters the case of horizontal 
boxes, the orientation category and external dimensions can assist the network in capturing accurate 
OBBs. Extra external dimension parameters further strengthen the description of OBBs, as shown 
in Figure 4.
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The loss function is as follows:
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Figure 4. The rotating box
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Among this, a  represents the predicted orientation class, and â  represents the true orientation 
classes.

EXPERIMENTS

During model training and inference, all input images were adjusted to a resolution of 608 × 608, 
and the proposed model was implemented using the PyTorch framework. Data enhancement, such as 
inversion, translation, and addition of noise are used for preprocessing during model training. Adm is 
utilized by the optimization algorithm with an initial rate of learning of 1.25 × 10–4. On the DOTA 
data set, nearly 100 epochs were trained. Eighty epochs are included in the HRSC2016 data set. 
For the HRSC2016 data set, the efficiency of the proposed DCN-BBAV was measured on a single 
NVIDIA TITAN X GPU. AdamW (Yu & Ji, 2022) is used as the optimizer, the weight attenuation 
was set to 0.0001, and the initial learning rate was set to 0.000025.

Model Evaluation Criteria
As the evaluation index, the mean average precision mean (mAP) is used as the criterion for evaluating 
the model in this paper. In the object detection task, three kinds of results are generally used: true 
positive samples (TP), false positive samples (FP), and false negative samples (FN). On the basis of 
these three results, the algorithm’s performance is assessed using the accuracy rate P, the recall rate 
R, and the average precision AP as the criterion, which are calculated using the following formula:

Precision
TP

TP FP
=

+
	 (9)

Recall
TP

TP FN
=

+
	 (10)

AP P R dR= ∫ ( )
0

1

	 (11)

mAP
AP

n
i

i

n
=

=∑ 1
.	 (12)

The mAP is the averaged value of the average accuracy of all categories. Firstly, P  and R  are 
calculated for each prediction frame, the R  value obtained each time is used as a threshold, when 
R  is greater than the threshold, the corresponding maximum accuracy is calculated, then the average 
of the accuracy is calculated to get the AP, and finally, the AP of all the different categories of objects 
is averaged to get the mAP.

Data Sets
The remote sensing data sets used for the experiment are DOTA (Xia et al., 2017) and HRSC2016 
(Liu et al., 2017). Among them, DOTA possesses 2,806 aerial images with resolution sizes starting at 
800 × 800 to 4,000 × 4,000, containing a total of 15 categories and 188,282 instances. The labeling 
method is a quadrilateral determined by four points, which can be applied to the horizontal frame 
detection task and the rotated frame detection task. The set used for training is 1,411 sheets, the set 
used for validation is 458 sheets, and the set used for tests is 937 sheets. The 15 categories included 
are: planes, bridges, harbors, athletic fields, small vehicles, large vehicles, roundabouts, swimming 
pools, ships, soccer fields, tennis courts, basketball courts, oil storage tanks, baseball fields, and 
helicopters, with the acronyms PL, BR, HA, GTF, SV, LV, RA, SP, SH, SBF, TC, BC, ST, BD, and 
HC, respectively. HRSC2016 is labeled in a format that uses a directional rotating frame approach. 
It contains 1,061 images with 2,976 instances, of which the set used for training contains 436 images 
and 1,207 instances, the set used for validation contains 181 images and 541 instances, and the set 
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used for test contains 444 images and 1,228 instances. The resolution of the data set ranges from 
300 × 300 to 1,500 × 900, and all the objects in HRSC2016 are treated as a category of “ship” for 
training and testing in this paper.

EXPERIMENTAL RESULTS

Figure 5 depicts detection outcomes on the data set DOTA. Table 1 displays the performance 
comparison results between this proposed DCN-BBAV and other models, including one-stage models 
RSDet (Wang et al., 2022), R3Det (Yang et al., 2020b), S2ANet (Han et al., 2020), two-stage models 
MaskOBB (Yang et al., 2020c), CenterMap (Wang et al., 2020), ReDet (Han et al., 2021) and anchor-
free-based models DRN (Pan et al., 2020), CFA (Guo et al., 2021), BBAV (Yi et al., 2020), ASFF-
BBAV (Yu et al., 2022), and PPSS (Song et al., 2023), which shows that the mAP of the DCN-BBAV 
reaches 77.30%. The PPSS model utilizes the classification information, regression information, and 
distribution characteristics of point sets to represent objects. However, in practical situations, this 
selection strategy may lead to the omission of important object information in certain cases or the 
selection of samples with higher noise levels. On the other hand, the DCN-BBAV focuses primarily 
on oriented object detection. It enhances the feature extraction capability by introducing the DCN and 
combines it with the representation of BBAV, directing the model toward oriented object detection.

Table 2 depicts the performance comparison results of the DCN-BBAV with CenterMap (Wang 
et al., 2020), ROI-Transformer (Ding et al., 2019), DRN (Pan et al., 2020), R3Det (Yang et al. 2020b), 
FPN-CSL (Yang & Yan, 2022), S2ANet (Han et al., 2020), Oriented R-CNN (Xie et al., 2021), BBAV 
(Yi et al., 2020), ASFF-BBAV (Yu et al., 2022), PPSS (Song et al., 2023) and CF-ORNet (Wang et 
al., 2023). The mAP50 (VOC2007) of the proposed DCN-BBAV reaches 90.52%, while the mAP50 
(VOC2012) reaches 96.67%, which is superior to several other comparative object detection models, 
and it is consistent with the comparison results on the DOTA data set.

Compared to the CF-ORNet, the DCN-BBAV exhibits significant performance advantages. 
This is attributed to the fact that the CF-ORNet, through the knowledge distillation process, fails to 

Table 1. Results of different algorithms on data set DOTA (%)

Method Backbone PL BD BR GTF SV LV SH TC

One-stage

RSDet R-152-FPN 90.10 82.00 53.80 68.50 70.20 78.70 73.60 91.20

R3Det R-152-FPN 89.49 81.17 50.53 66.10 70.92 78.66 78.21 90.81

S2ANet R-50-FPN 89.11 82.84 48.37 71.11 78.11 78.39 87.25 90.83

Two-stage

MaskOBB R-50-FPN 89.61 85.09 51.85 72.90 75.28 73.23 85.57 90.37

CenterMap R-50-FPN 88.88 81.24 53.15 60.65 78.62 66.55 78.10 88.83

ReDet ReR-50-ReFPN 88.79 82.64 53.97 74.00 78.13 84.06 88.04 90.52

Anchor-free

DRN H-104 89.71 82.34 47.22 64.10 76.22 74.43 85.84 90.57

CFA R-101-FPN 89.26 81.72 51.81 67.17 79.99 78.25 84.46 90.77

BBAV R-101-FPN 88.63 84.06 52.13 69.56 78.26 80.40 88.06 90.87

ASFF-BBAV Res2Net50-FPN 89.84 84.90 51.55 74.42 78.54 83.28 87.36 90.52

PPSS R-50-FPN 88.99 82.28 54.02 73.32 81.01 81.88 88.13 90.85

DCN-BBAV (ours) R-101-FPN 90.17 87.14 52.18 78.18 82.33 81.41 84.31 91.12
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adequately preserve and transmit valuable information from the first stage, thereby influencing the 
final fine-grained recognition performance.

In contrast, the DCN-BBAV adopts a nonparametric form, specifically in the loss function, 
to ensure the orientation of the bounding box. This not only reduces the parameter count but also 
enhances the effectiveness of detection. Figure 6 depicts detection results on the data set HRSC2016. 
Observations reveal that the visualization performance of the Bounding Box is outstanding, accurately 
locating targets in various orientations. This is attributed to the introduction of the DCN, which 
adaptively adjusts the receptive field, accommodating diverse shapes and orientations of targets, 
thereby more effectively capturing local features and enhancing detection accuracy. Additionally, 
by employing rotation box parameters to capture boundary information, rotation boxes, compared 
to traditional Bounding Boxes, exhibit greater flexibility in adapting to the orientation of targets, 
further improving localization accuracy.

Ablation Experiments
The results of ablation experiments conducted on the DOTA data set and HRSC2016 data set are 
presented in Table 3, respectively. In Table 3, several combinations yielded better results in which 

Figure 5. Results of DOTA data set visualization



International Journal of Cognitive Informatics and Natural Intelligence
Volume 17 • Issue 1

11

Table 2. Results of different algorithms on the data set HRSC2016 (%)

Method Backbone mAP50 (07) mAP50 (12)

R3Det R-101-FPN 89.26 96.01

FPN-CSL R-101-FPN 89.62 96.10

ROI-Transformer R-101-FPN 86.20 —

DRN H-104 — 92.70

CenterMap R-50-FPN — 92.80

S2ANet R-101-FPN 90.17 95.01

Oriented R-CNN R-50-FPN 90.40 96.50

BBAV R-101-FPN 88.60 94.85

ASFF-BBAV Res2Net-50-FPN 90.30 —

PPSS R-50-FPN 89.53 —

CF-ORNet R-50-FPN 84.26 —

DCN-BBAV (ours) R-101-FPN 90.52 96.67

Figure 6. Results of HRSC2016 data set visualization



International Journal of Cognitive Informatics and Natural Intelligence
Volume 17 • Issue 1

12

the performance of the BBAV was marginally improved with the introduction of the SAM and 
CAM. Similarly, with the introduction of the DCN, the performance of the BBAV is also slightly 
improved. The performance of the BBAV can be greatly improved by introducing the DCN, SAM, 
and CAM at the same time. Among them, the best results of the proposed DCN-BBAV model can 
be obtained when the last 26 3 × 3 convolutional kernels of ResNet101 are replaced by deformable 
convolutional kernels, and four spatial attention modules and one channel attention module were 
introduced to the proposed DCN-BBAV model, validating the efficacy of each module. Aiming to 
be more intuitive, the PR curve is plotted with mAP50 (VOC2007) on the HRSC2016 data set as an 
example, as illustrated in Figure 7.

By introducing the DCN, SAM, and CAM, we observe significant improvements in both the 
recall rate and mAP. The incorporation of the DCN aids in capturing specific shape and directional 
information of the targets, thereby enhancing the model’s ability to recognize objects. Additionally, 
the SAM and CAM individually enhance the model’s focus on spatial and channel information. The 
SAM is dedicated to reinforcing the model’s attention to different locations in the image, allowing 
for a more accurate capture of target boundary information. On the other hand, the CAM focuses on 
the importance of different channels in the image, enabling better capture of abstract features. The 
synergistic effects of these comprehensive optimization strategies result in superior performance of 
the model in handling object detection tasks.

CONCLUSION

The drawbacks of using an ordinary convolutional kernel to extract features for directional target 
detection were analyzed, and it was concluded that an ordinary convolutional kernel has low accuracy 
in boundary feature extraction for targets in different directions. A target detection algorithm (DCN-
BBAV) that combines the DCN and BBAV was proposed with this problem as its starting point. 
Comprehensive experiments showed that the DCN-BBAV helps to improve the detection accuracy. 
The DCN-BBAV obtained the highest accuracy without any additional features and accomplished a 
significant improvement over the baseline on the DOTA as well as HRSC2016 data sets.

However, the proposed DCN-BBAV model has some limitations:
In terms of detection accuracy, both the backbone network and the attention module of the DCN-

BBAV model have areas for improvement. Therefore, its detection accuracy will be further improved 
in the future by introducing other feature enhancement techniques (Shi et al., 2022) and parameter 
tuning (Bai et al., 2022).

The feature extraction process of the DCN-BBAV model is more complicated, while real 
application scenarios require high real-time performance of the model. Therefore, the model will be 

Table 3. mAP values of ablation experiments on DOTA and HRSC2016 data sets (%)

Method Backbone
DOTA HRSC2016

mAP mAP50 (VOC07) mAP50 (VOC12)

B B A V R e s N e t 1 0 1 7 5 . 3 6 8 8 . 6 0 9 4 . 8 5

B B A V + D C N ResNet101(DCN*26) 7 6 . 3 3 8 9 . 9 6 9 6 . 2 5

B B A V + S A M + C A M R e s N e t 1 0 1 7 6 . 0 9 8 9 . 8 7 9 6 . 0 8

BBAV+DCN+SAM+CAM ResNet101(DCN*3) 7 6 . 9 7 9 0 . 3 2 9 6 . 4 1

BBAV+DCN+SAM+CAM ResNet101(DCN*26) 7 7 . 3 0 9 0 . 5 2 9 6 . 6 7

BBAV+DCN+SAM+CAM ResNet101(DCN*30) 7 7 . 1 8 9 0 . 3 8 9 6 . 4 8

BBAV+DCN+SAM+CAM ResNet101(DCN*33) 7 6 . 3 8 9 0 . 2 7 9 6 . 3 0
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optimized in the future, that is, it will be improved to a single-stage (Li et al., 2022b) multidirectional 
object detector to improve the training and detection efficacy of the model without compromising 
the detection precision.

In summary, future research will primarily focus on two aspects. Firstly, we will explore 
the incorporation of additional feature enhancement techniques to further enhance the model’s 
performance in object detection tasks. Secondly, there are plans to optimize the model’s feature 
extraction process, potentially by transforming it into a single-stage multidirectional object detector, 
aiming to improve the model’s training and detection effectiveness without compromising the 
detection accuracy.

Figure 7. PR curves for mAP50(VOC07) on the HRSC2016 data set
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